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Abstract 
 
The authors developed the transfer mass coefficient method (TMCM) in order to compute effectively the dynamic 

response of a beam structure. In this paper, the algorithm for the dynamic response analysis of a three-dimensional 
beam structure is formulated. Through the computation results of numerical models, which are plane and space beam 
structures, obtained by the transfer mass coefficient method and the direct integration method, we verify that the 
transfer mass coefficient method can remarkably decrease the computation time of the direct integration method with-
out the loss of accuracy in spite of using small computer storage. 
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1. Introduction 

The number of large and complex structures has in-
creased rapidly with the progress of industry. It is very 
important to obtain an accurate dynamic response of 
the structures subjected to various loads in design 
process for the safety of the structures. 

The dynamic analysis of complex structures has ex-
perienced impressive progress since the 1970s [1]. A 
variety of methods for obtaining the dynamic response 
have been developed. Among them, the two most 
popular methods using finite element analysis with the 
growth of digital computer are the mode superposition 
method (MSM) and the direct integration method 
(DIM) [1-3]. The MSM is very effective for obtaining 
the dynamic response of the structures by using only a 
few of the lowest vibration modes. However, the 
MSM is not valid for structures with nonlinearity and 

damping that is not orthogonal [1]. On the other hand, 
DIM, which combines the finite element analysis and 
the numerical integration techniques, such as New-
mark’s β and Wilson’s θ method, can evaluate the 
dynamic response of structures with nonlinearities and 
a variety of damping types. 

Both the MSM and the DIM need large computer 
memory and long computation time in case of requir-
ing an accurate dynamic response of large and com-
plex structures, because the large and complex struc-
ture is modeled as a numerical model with a large 
number of degrees-of-freedom. In particular, the DIM 
is generally very inferior to the MSM in view of com-
putation time. Therefore, it is difficult to obtain the 
accurate dynamic response of large and complex 
structures by both methods on a personal computer. 
To overcome above-mentioned disadvantages, a vari-
ety of methods for the efficient dynamic response 
analysis are proposed by many researchers [4-10]. 

The step-by-step transfer matrix method [4, 5], 
which combines the standard transfer matrix method 
[11] and the numerical integration techniques, has the 
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drawback that numerical instabilities often occur when 
time step is small and there is rigid elastic support at 
the intermediate part of the structure [5, 10]. The finite 
element-transfer matrix method [6, 7] for the dynamic 
response analysis has the same drawback occurring in 
the step-by-step transfer matrix method, too. 

Inoue et al. [10] suggested a method which is de-
rived from a combination of the transfer influence 
coefficient method [12, 13] and the numerical integra-
tion techniques in order to improve the accuracy and 
computational efficiency of the dynamic response 
analysis for the large structures. However, this method 
has many limitations for analyzing the dynamic re-
sponse of structures. Because it requires that the mass 
matrix always exist as a diagonal matrix, a beam struc-
ture is restricted within a lumped mass system. There-
fore, we cannot use a consistent mass system for a 
beam structure in this method, and it is difficult to 
adapt the algorithm for the plate, shell and solid struc-
tures later. Because this method requires that the 
damping matrix always be a diagonal matrix, the 
damping of a structure is restricted within several vis-
cous dampers that support the structure from the base. 
Therefore, it is very difficult to use structural damping 
and Rayleigh-type damping in this method. 

The purpose of this paper is to present a new me-
thod for computing effectively the dynamic response 
analysis of various beam structures modeled as 
lumped mass, consistent mass, viscous damper, struc-
tural damping and Rayleigh-type damping. We call it 
the transfer mass coefficient method (TMCM). In this 
paper, the algorithm for the dynamic response analysis 
of a three-dimensional beam structure is formulated by 
the TMCM. Plane and space beam structures are cho-
sen as numerical models. The response results and 
computation times obtained by the TMCM are com-
pared with those obtained by the DIM under the same 
condition. 
 

2. Formulation 

2.1 Modeling 

To describe the concept of the transfer mass coeffi-
cient method, a three-dimensional beam structure is 
introduced as an analytical model, as shown in Fig.1. 

The three-dimensional beam structure consists of 
beam elements, springs, dampers and crooked parts. 
Connecting points of adjacent beam elements and 
both ends of the analytical model are called as nodes. 

Because the excitation and response points should be 
included in nodes, too, we should properly separate 
the beam structure. For the analytical model with n 
beam elements, each node is called successively as 
node 1, node 2, …, node n+1 from the left- to right-
hand ends of the model. Each node has 6 degrees-of-
freedom. 

A displacement vector ( { , , , , , }T
x y z x y zu u u φ φ φ=d ) 

at each node is composed of displacements 
( , ,x y zu u u ) in the direction of the coordinate axes and 
the angular displacements ( , ,x y zφ φ φ ) around the co-
ordinate axes. A velocity vector ( /d dt= =v d  
{ , , , , , }T

x y z x y zv v v ω ω ω ) at each node consists of lin-
ear velocities ( , ,x y zv v v ) and the angular velocities 
( , ,x y zω ω ω ). An acceleration vector ( /d dt= =a v  
{ , , , , , }T

x y z x y za a a α α α ) at each node is composed of 
linear accelerations ( , ,x y za a a ) and the angular accel-
erations ( , ,x y zα α α ). A force vector ( =f  
{ , , , , , }T

x y z x y zF F F M M M ) at each node consists of 
the forces ( , ,x y zF F F ) and the moments 
( , ,x y zM M M ). 

If there are some intermediate supporting parts 
which support the beam structure from the base, they 
are modeled as six springs and six viscous dampers. 
The springs are three linear and three rotational 
springs whose constants are ( ˆ ˆ ˆ, ,x y zk k k ) and 
( ˆ ˆ ˆ, ,x y zK K K ). The viscous dampers are three linear 
and three rotational viscous dampers whose constants 
are ( ˆ ˆ ˆ, ,x y zc c c ) and ( ˆ ˆ ˆ, ,x y zC C C ). 

In the present method, the boundary conditions of 
the beam structure are modeled as springs and viscous 
dampers supporting the first and the last nodes from 
the base. For example, we consider the values of the 
spring constants of node 1 as infinities in case of fixed 
condition at the left-hand end. For the free condition 
at the right-hand end, the values of the spring con-
stants of node n+1 are considered as zeros. 

 

 
 
Fig. 1. Analytical model. 
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2.2 Transfer rule 

To describe easily the concept of the present 
method, a node is divided into the left- and right-hand 
sides of the node. We denote quantities of the left-
hand side of the node as with the head mark “−” on 
the symbols corresponding to the quantities, and 
quantities of the right-hand side of the node as with-
out the head mark. Symbols with subscript i represent 
quantities corresponding to the i-th node or the i-th 
beam element. Symbols with superscript i mean 
quantities representing by the local coordinate system 
fixed on the i-th beam element. For example, the vec-
tor +

i
i 1f  means the force vector represented by the 

local coordinate system of the i-th beam element at 
the right-hand side of the (i+1)-th node. The vector 

+
i
i 1a  means the acceleration vector represented by the 

local coordinate system of the i-th beam element at 
the left-hand side of the (i+1)-th node. 

We define the relationship between the force vector 
( i

if ) and the acceleration vector ( i
ia ) as follows: 

 
(t) (t) (t),= +i i i i

i i i if J a b   (1) 
 

and the matrix i
iJ  and the vector i

ib  are the mass 
coefficient matrix and the force corrective vector 
represented by the local coordinate system of the i-th 
beam element at the right-hand side of the i-th node. 

In the same manner, the relationships between the 
force vectors ( +

i
i 1f , +

i
i 1f , +

+
i 1
i 1f ) and the acceleration vec-

tors ( +
i
i 1a , +

i
i 1a , +

+
i 1
i 1a ) are defined as follows: 

 
(t) (t) (t),+ + + += +i i i i

i 1 i 1 i 1 i 1f J a b   (2) 
(t) (t) (t),+ + + += +i i i i

i 1 i 1 i 1 i 1f J a b   (3) 
(t) (t) (t).+ + + +

+ + + += +i 1 i 1 i 1 i 1
i 1 i 1 i 1 i 1f J a b   (4) 

 
From the continuous condition of the displacement 
vectors at each node, we obtain 

 
( ) ( ),
( ) ( ),
( ) ( ).

t t
t t
t t

+ +

+ +

+ +

=
=
=

i i
i 1 i 1

i i
i 1 i 1

i i
i 1 i 1

d d
v v
a a

  (5) 

 
From Newmark’s β method [14], the displacement 
and velocity vectors at time t are assumed by using 
the displacement, velocity and acceleration vectors 
before time step, t∆ , and the acceleration vector at 
the time t. Therefore, the displacement and velocity 

vectors of the i-th and (i+1)-th nodes are as follows: 
 

2( ) ( ) ( ) ( ),
( ) ( ) ( ),
t β t t t
t t t tγ
= ∆ +
= ∆ +

i i i
i i i

i i i
i i i

d a g
v a h

  (6) 

2( ) ( ) ( ) ( ),
( ) ( ) ( ),
t β t t t
t t t tγ

+ + +

+ + +

= ∆ +
= ∆ +

i i i
i 1 i 1 i 1

i i i
i 1 i 1 i 1

d a g
v a h

  (7) 

 
where 
 

2

2

( ) ( ) ( )
(0.5 )( ) ( ),

( ) ( ) (1 ) ( ),
( ) ( ) ( )

(0.5 )( ) ( ),
( ) ( ) (1 ) ( ),

t t t t t t
t t t

t t t t t t
t t t t t t

t t t
t t t t t t

β
γ

β
γ

+ + +

+

+ + +

= − ∆ + ∆ − ∆ +
− ∆ − ∆

= − ∆ + − ∆ − ∆
= − ∆ + ∆ − ∆ +

− ∆ − ∆
= − ∆ + − ∆ − ∆

i i i
i i i

i
i

i i i
i i i

i i i
i 1 i 1 i 1

i
i 1

i i i
i 1 i 1 i 1

g d v
a

h v a
g d v

a
h v a

  (8) 

 
in which the parameters β and γ are chosen by con-
sidering integration accuracy and stability. 

The equation of motion for the i-th beam element 
at time t, which is represented by the local coordinate 
system fixed on the i-th beam element, is represented 
as 
 

( ) ( ) ( ) ( )
,

( ) ( ) ( ) ( )
t t t t
t t t t

⎧ ⎫ ⎧ ⎫ ⎧ ⎫ ⎧ ⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪+ + =⎨ ⎬ ⎨ ⎬ ⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭ ⎩ ⎭ ⎩ ⎭

L L L L
i i ii i i i
i i iR R R R

i i i i

a v d f
M C K

a v d f
 (9) 

 
where the matrices i

iM , i
iC  and i

iK  are the 
mass, damping and stiffness matrices of the i-th beam 
element represented by the local coordinate system of 
the i-th beam element. We can use both the lumped 
mass system and the consistent mass system for the 
beam element in the present method. For the consis-
tent mass system, the mass matrix i

iM  is given in 
appendix. In the present method, we can use struc-
tural damping and Rayleigh-type damping for the 
beam element. For the Rayleigh-type damping, the 
matrix i

iC  is given in the appendix. The matrix 
i
iK  given in the appendix is the general stiffness  

 
 
Fig. 2. Definition of positive direction of displacements and 
forces of the i-th beam element. 
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matrix for the beam element. The superscripts "L" 
and "R" of ( )tia , ( )tiv , ( )tid  and ( )tif  mean the 
quantities of the left- and right-hand sides of the i-th 
beam element. 

Because the left-hand side of the i-th beam element 
becomes the right-hand side of the i-th node, and the 
right-hand side of the i-th beam element becomes the 
left-hand side of the (i+1)-th node, we obtain 

 
( ) ( ), ( ) ( ), ( ) ( ),

( ) ( ), ( ) ( ), ( ) ( ),

( ) ( ), ( ) ( ).

t t t t t t

t t t t t t

t t t t
+ + +

+

= = =

= = =

= − =

i L i L i L
i i i i i i

i R i R i R
i 1 i i 1 i i 1 i

i L i R
i i i 1 i

a a v v d d

a a v v d d

f f f f

 (10) 

 
Fig. 2 shows the positive directions of displace-

ments and forces at the left- and right-hand sides of 
the i-th beam element from the viewpoint of nodes. 
Therefore, Eq. (9) can be changed as follows: 

 
( ) ( ) ( ) ( )

.
( ) ( ) ( ) ( )
t t t t
t t t t+ + + +

⎧ ⎫ ⎧ ⎫ ⎧ ⎫ ⎧ ⎫−⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪+ + =⎨ ⎬ ⎨ ⎬ ⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭ ⎩ ⎭ ⎩ ⎭

i i i i
i i ii i i i
i i ii i i i

i 1 i 1 i 1 i 1

a v d f
M C K

a v d f
 (11) 

 
From substituting Eqs. (5)-(7) into Eq. (11), the fol-
lowing equation is obtained.  
 

( ) ( ) ( )
,

( ) ( ) ( )
t t t
t t t+ + +

⎡ ⎤ ⎧ ⎫ ⎧ ⎫ ⎧ ⎫−⎪ ⎪ ⎪ ⎪ ⎪ ⎪+ =⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎢ ⎥
⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎣ ⎦ ⎩ ⎭ ⎩ ⎭ ⎩ ⎭

i i i i i
i i i i i
i i i i i
i i i 1 i 1 i 1

P Q a y f
R S a y f

  (12) 

 
where 
 

2( ) ,

( ) ( ) ( )
.

( ) ( ) ( )

t t

t t t
t t t

γ β

+ + +

⎡ ⎤
= + ∆ + ∆⎢ ⎥

⎣ ⎦
⎧ ⎫ ⎧ ⎫ ⎧ ⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪= +⎨ ⎬ ⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭ ⎩ ⎭

i i
i i ii i
i i ii i

i i

i i i
i ii i i
i ii i i

i 1 i 1 i 1

P Q
M C K

R S

y h g
C K

y h g

  (13) 

 
Consider the transfer of the mass coefficient matrix 

and the force corrective vector, across the i-th beam 
element, from the right-hand side of the i-th node to 
the left-hand side of the (i+1)-th node. From Eqs. (1), 
(2) and (12), we can obtain 
 

,+ = +i i i i
i 1 i i iJ R B S   (14) 

( ) ( ) ( ),t t t+ += +i i i i
i 1 i i i 1b R w y   (15) 

 
where 
 

( ) { ( ) ( )},t t t

−= = − +
= +

i i i i i i 1
i i i i i i

i i i i
i i i i

B A Q , A (P J ) ,
w A b y

  (16) 

and Eqs. (14) and (15) are the field transfer rules of 
the mass coefficient matrix and the force corrective 
vector, respectively. 

If there are an additional mass, springs, viscous 
dampers and external forces at the (i+1)-th node, 
the balancing of the forces and the moments at the 
(i+1)-th node yields 

 
ˆˆ ( ) ( ) ( ) ( )

ˆ ˆ( ) ( ),

t t t t

t t
+ + + + + +

+ + +

= − − −

+

i i i i i i
i 1 i 1 i 1 i 1 i 1 i 1

i i i
i 1 i 1 i 1

M a f f C v

K d q
  (17) 

 
where 
 

1

1

1

{ 1

ˆ ˆ ˆ ˆˆ ˆ ˆDiag[ , , , , , ] ,
ˆ ˆ ˆ ˆˆ ˆ ˆDiag[ , , , , , ] ,

ˆ ˆ ˆˆ ˆ ˆ ˆDiag[ , , , , , ] ,
ˆ ˆ ˆˆ ˆ ˆ ˆ, , , , , } ,

i
x y z i

i
x y z x y z i

i
x y z x y z i

i T
x y z x y z i

m m m M M M

c c c C C C

k k k K K K

q q q Q Q Q

+ +

+ +

+ +

+ +

=

=

=

=

i
i 1

i
i 1

i
i 1

i
i 1

M

C

K

q

  (18) 

 
in which Diag[…] represents a diagonal matrix, the 
matrix ˆ

+
i
i 1M  consists of the additional mass ( m̂ ) and 

the rotational inertia ( M̂ ) at the (i+1)-th node. The 
matrices ˆ

+
i
i 1K  and ˆ

+
i
i 1C  are the stiffness and damp-

ing matrices composed of the linear and rotational 
springs and viscous dampers supporting the (i+1)-th 
node of the analytical model from the base. The vec-
tor ˆ +

i
i 1q  is the external force vector composed of the 

external force ( q̂ ) and moment ( Q̂ ) acting on the 
(i+1)-th node. 

Consider the transfer of the mass coefficient ma-
trix and the force corrective vector from the left-
hand side to the right-hand side of the (i+1)-th 
node. From Eqs. (2), (3), (7) and (17), we can de-
rive 

 
2ˆˆ ˆ( ) ,γ t β t+ + + + += + + ∆ + ∆i i i i i

i 1 i 1 i 1 i 1 i 1J J M C K   (19) 
ˆ ˆˆ( ) ( ) ( ) ( ) ( ),t t t t t+ + + + + + += − + +i i i i i i i

i 1 i 1 i 1 i 1 i 1 i 1 i 1b b q C h K g  (20) 
 
and Eqs. (19) and (20) are the point transfer rules of 
the mass coefficient matrix and the force corrective 
vector, respectively. 

As shown in Fig. 3, we define the positive direc-
tions of the displacements i

i 1( , , )x y zu u u + , the angular 
displacements i

i 1( , , )x y zφ φ φ + , the forces i
i 1( , , )x y zF F F +  

and the moments i
i 1( , , )x y zM M M +  represented by 

the local coordinate system ( i i i
i 1 i 1 i 1X , Y , Z+ + + ) fixed on 

the i–th beam element at the right-hand side of the 
(i+1)-th node. The positive directions of the dis-
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placements i 1
i 1( , , )x y zu u u +
+ , the angular displacements 

i 1
i 1( , , )x y zφ φ φ +
+ , the forces i 1

i 1( , , )x y zF F F +
+  and the mo-

ments i 1
i 1( , , )x y zM M M +
+  represented by the local co-

ordinate system ( i 1 i 1 i 1
i 1 i 1 i 1X , Y , Z+ + +
+ + + ) fixed on the (i+1)-th 

beam element are illustrated in Fig. 3. 
If the local coordinate system of the (i+1)-th  

beam element is rotated by the Euler angle, 
1 2 3 i 1( , , )θ θ θ+ +=i 1θ , from the local coordinate system 

of the i-th beam element, as shown in Fig. 4 [13], we 
obtain 

 
( ) ( ) ( ) ( )t t t t+ +

+ + + + + += =i 1 i i 1 i
i 1 i 1 i 1 i 1 i 1 i 1a T(θ )a , f T(θ )f ,  (21) 

 
where 

 
11 12 13

21 22 23

31 32 33

11 12 13

21 22 23

31 32 33

11 2 12 1 2

13 1 2 21 2 3

22 1 2 3

0 0 0
0 0 0
0 0 0

,
0 0 0
0 0 0
0 0 0

cos , cos  sin ,
sin  sin , sin  cos ,

 cos  cos  cos sin 

t t t
t t t
t t t

t t t
t t t
t t t

t t
t t
t

θ θ θ
θ θ θ θ
θ θ θ

+

+

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

= =
= = −
= −

i 1

i 1

T( θ )

1 3

23 1 2 3 1 3

31 2 3

32 1 2 3 1 3

33 1 2 3 1 3

 sin ,
 sin  cos  cos cos  sin ,
 sin  sin ,

cos  cos  sin sin  cos ,
 sin  cos  sin cos  cos ,

t
t

t
t

θ θ
θ θ θ θ θ
θ θ
θ θ θ θ θ
θ θ θ θ θ

= +
=
= − −
= − +

  (22) 

 
and the matrix +i 1T( θ )  has the following property: 

 
.−

+ +=1 T
i 1 i 1T(θ ) T(θ )   (23) 

 

 
 
Fig. 3. Definition of positive direction of displacements and 
forces of crooked part. 

We can obtain the matrix +
+

i 1
i 1J  and the vector 

( )t+
+

i 1
i 1b  represented by the local coordinate system of 

the (i+1)-th beam element from Eqs. (3), (4) and (21) 
as follows: 

 
,+

+ + + +=i 1 i T
i 1 i 1 i 1 i 1J T(θ )J T(θ )   (24) 

( ) ( ),t t+
+ + +=i 1 i

i 1 i 1 i 1b T(θ )b   (25) 
 

Eqs. (24) and (25) are the coordinate transforma-
tion rules of the mass coefficient matrix and the force 
corrective vector, respectively. 

If there are an additional mass, springs, viscous 
dampers and external forces at the first node, the bal-
ancing of the force at the first node yields 

 
ˆˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ).t t t t t t= − − − +1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1M a f f C v K d q  (26) 
 
Because the left-hand boundary condition of the 

structure is modeled as the point stiffness matrix 
( ˆ 1

1K ) and damping matrix ( ˆ 1
1C ) at the first node in the 

present method, the force vector ( )t1
1f  can be con-

sidered as a null vector. Therefore, we can find the 
matrix 1

1J  and the vector ( )t1
1b  from ( )t =1

1f 0 , Eq. 
(26) and the equations obtained by substituting 1 into 
i in Eqs. (1) and (6) as follows: 

 
2ˆˆ ˆ( ) ,γ t β t= + ∆ + ∆1 1 1 1

1 1 1 1J M C K   (27) 
ˆ ˆ ˆ( ) ( ) ( ) ( ).t t t t= + −1 1 1 1 1 1

1 1 1 1 1 1b C h K g q   (28) 
 
After finding the matrix 1

1J  from Eq. (27), we 
successively apply Eqs. (14), (19) and (24) for the 
analytical model. Therefore, we can obtain the matrix 

+
n
n 1J  at the right-hand side of the (n+1)-th node, that 

is, the last node. In the same manner, after obtaining 
the vector ( )t1

1b  from Eq. (28), we successively  
 

 
 
Fig. 4. Definition of the Euler angle. 
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apply Eqs. (15), (20) and (25). Finally, we can obtain 
the vector ( )t+

n
n 1b . 

 
2.3 Dynamic response 

Because the right-hand boundary condition of the 
structure is modeled as the point stiffness matrix 
( ˆ

+
n
n 1K ) and damping matrix ( ˆ

+
n
n 1C ) at the (n+1)-th 

node in the present method, the force vector ( )t+
n
n 1f  

can be considered as a null vector. From ( )t+ =n
n 1f 0  

and the equation obtained by substituting (n+1) into i 
in Eq. (3), the acceleration vector of the (n+1)-th node 
can be obtained as follows: 

 
( ) ( ).t t−

+ + += −n n 1 n
n 1 n 1 n 1a (J ) b   (29) 

 
From Eqs. (1), (2), (5), (12) and (16), the relation-

ship of the acceleration vectors between the left- and 
right-hand sides of the the i-th beam element is given 
as 

 
( ) ( ) ( ) .t t t+= +i i i i

i i i 1 ia B a w   (30) 
 
From the equations obtained by substituting i-1 into 

i in Eqs. (21) and (23), the following equation can be 
obtained: 

 
( ) ( ) .t t− =i 1 T i

i i ia T(θ ) a   (31) 
 
After the acceleration vector of the (n+1)-th node is 

calculated from Eq. (29), the acceleration vectors at 
the other nodes can be obtained recursively by using 
Eqs. (30) and (31). Therefore, the displacement and 
velocity vectors of all nodes at the time t can be de-
rived from Eqs. (6) and (7) after the acceleration vec-
tors at the time t are calculated. 

 
2.4 Initial acceleration 

At the initial time, t=0, Eq. (11) becomes: 
 

(0) (0) (0) (0)
.

(0) (0) (0) (0)+ + + +
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⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭ ⎩ ⎭ ⎩ ⎭

i i i i
i i ii i i i
i i ii i i i

i 1 i 1 i 1 i 1

a v d f
M C K

a v d f
 (32) 

 
From Eq. (32), the following equation can be ob-
tained. 

 
(0) (0) (0)

,
(0) (0) (0)+ + +
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⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭ ⎩ ⎭⎣ ⎦

i i ii i
i i ii i

i i ii i
i 1 i 1 i 1i i

a y fP Q
a y fR S

%% %

%% %
  (33) 

where 
 

,

(0) (0) (0)
.

(0) (0) (0)+ + +
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i ii i i
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M
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C K
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%
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  (34) 

 
The field transfer rules of the mass coefficient ma-

trix and the force corrective vector at the initial time 
can be obtained from Eqs. (1) and (2) at t=0 and Eq. 
(33) as follows: 

 
,+ = +i i i i

i 1 i i iJ R B S%% %   (35) 

(0) (0) (0),+ += +i i i i
i 1 i i i 1b R w y% % %   (36) 

 
where 

 
{ }(0) (0) (0)

.−

= = +

= − +

i i i i i i i
i i i i i i i

i i i 1
i i i

B A Q , w A b y ,

A (P J )

% % %% % %

% %
 (37) 

 
From the balancing of the forces and the moments of 
the (i+1)-th node at the initial time, we obtain 

 
ˆˆ (0) (0) (0) (0)

ˆ ˆ(0) (0).
+ + + + + +

+ + +

= − − −

+

i i i i i i
i 1 i 1 i 1 i 1 i 1 i 1

i i i
i 1 i 1 i 1

M a f f C v

K d q
  (38) 

 
The point transfer rules of the mass coefficient ma-

trix and the force corrective vector at the initial time 
can be obtained from Eqs. (2), (3) and (5) at t=0 and 
Eq. (38) as follows: 

 
ˆ ,+ + += +i i i

i 1 i 1 i 1J J M   (39) 
ˆ ˆˆ(0) (0) (0) (0) (0).+ + + + + + += − + +i i i i i i i

i 1 i 1 i 1 i 1 i 1 i 1 i 1b b q C v K d  (40)  
 

From the balancing of the forces and the moments of 
the first node at the initial time, we obtain 

 
ˆˆ (0) (0) (0) (0)

ˆ ˆ(0) (0).

= − −

− +

1 1 1 1 1 1
1 1 1 1 1 1

1 1 1
1 1 1

M a f f C v

K d q
 (41)  

 
At the initial time, the mass coefficient matrix 1

1J  
and the force corrective vector (0)1

1b  of the first 
node can be obtained from (0) =1

1f 0 , Eq. (1) at t=0 
and Eq. (41) as follows: 
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ˆ ,=1 1
1 1J M   (42) 

ˆ ˆ ˆ(0) (0) (0) (0).= + −1 1 1 1 1 1
1 1 1 1 1 1b C v K d q   (43) 

 
After finding the matrix 1

1J  from Eq. (42), we 
successively apply Eqs. (35) and (39), and Eq. (24) at 
t=0 for analytical model. Therefore, we can obtain the 
matrix +

n
n 1J . In the same manner, after obtaining the 

vector (0)1
1b  from Eq. (43), we successively apply 

Eqs. (36) and (40), and Eq. (25) at t=0. Finally, we 
can obtain the vector (0)+

n
n 1b . 

From Eqs. (1), (2) and (5) at t=0, and Eqs. (33) and 
(37), the relationship of the acceleration vectors be-
tween the left- and right-hand sides of the i-th beam 
element is given as 

 
(0) (0) (0) .+= +i i i i

i i i 1 ia B a w% %   (44) 
 
The initial acceleration vector of the (n+1)-th node 

can be obtained from Eq. (29) at t=0. The initial ac-
celeration vectors at the other nodes can be obtained 
recursively by using Eqs. (44) and Eq. (31) at t=0. 
 

3. Numerical examples 

We made two computer programs based on the 
TMCM and DIM. In this paper, the plane and space 
beam structures are chosen as the numerical models. 
The response results and computation times of the 
TMCM are compared with those of the DIM under the 
same condition to verify the computational accuracy 
and efficiency of the TMCM. 

 
3.1 Example 1 

The first numerical model is a linearly tapered can-
tilever beam of solid rectangular cross-section, as 
shown in Fig. 5. The physical parameters of the beam 
are as follows: mass density 7860 kg/m3, Young’s 
modulus 206 GPa. The beam has a viscous damper 
(cy= 100 Ns/m) at the right-hand end; the structural 
damping of the beam is neglected. The beam is ini-
tially at rest and is subjected to a step load (qy= 2000 

 

 
 

Fig. 5. Linearly tapered cantilever beam. 

N) at the right-hand end. Each node of the beam has 
two degrees-of-freedom in the first numerical model. 

In numerical calculation, the linearly tapered beam 
is simply modeled as a large number of beam ele-
ments. Each element has constant rectangular cross-
section whose area linearly decreases from the first  

 

 
 
Fig. 6. Dynamic response of linearly tapered cantilever beam 
subjected to step load. 

 

 
 
Fig.  7.  Comparison of computation times for linearly ta-
pered cantilever beam. 

 

 
 
Fig.  8.  Dynamic response of linearly tapered cantilever 
beam subjected to periodic load. 
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beam element to the last beam element. The mass of 
the beam is considered as the consistent mass model-
ing. Because the boundary condition of the beam is 
fixed-free, the numerical model has two springs sup-
porting the first node. The values of the spring con-
stants of the first node are considered as 1.0E20. The 
time step is 0.0001 s, and the total response time is 
0.2 s. The parameters β and γ of Newmark’s β 
method are considered as 0.25 and 0.5, respectively. 

After the beam is divided into 20, 40, 60, 80 and 
100 beam elements, the results computing the dy-
namic responses of the right-hand end of the beam by 
the TMCM coincide completely with those by the 
DIM. Fig. 6 shows the displacement ( yu ) of the right-
hand end of the beam modeled as the 100 beam ele-
ments, calculated by the TMCM and DIM. To dis-
tinctly show the response results of both methods in 
Fig. 6, the result of the TMCM is represented by the 
solid line, that of the DIM is represented as only 101 
symbols, because the number of time points of the 
dynamic response is very large and both results coin-
cide with each other. The results of the DIM in Fig. 8, 
Fig. 10 and Fig. 11 are represented as only 101 sym-
bols, for the same reason as Fig. 6. 

Fig. 7 shows computation time ratio by both meth-
ods according to the number of the beam elements, 
where the computation time used for obtaining dy-
namic response of the beam modeled as 20 beam 
elements by the TMCM is defined as one. It is found 
from Fig. 7 that the TMCM is superior to the DIM in 
respect to computation time. In particular, the differ-
ence of computation times by both methods largely 
increases according to the number of the used beam 
elements. 

When the above beam is subjected to in-plane peri-
odic load at the right-hand end ( ˆ yq =A sin ωt, A=200 
N, ω=100 Hz), Fig. 8 shows the displacement ( yu ) of 
the right-hand end of the beam modeled as 100 beam 
elements, obtained by the TMCM and the DIM. The 
results obtained by the TMCM agree well with those 
by the DIM, too. 

If the beam is modeled as 100 beam elements, the 
total degrees-of-freedom of the numerical model is 
202. Then, in the DIM, the sizes of the total mass, 
damping and stiffness matrices are 202 by 202. How-
ever, the size of the mass coefficient matrix in the 
TMCM is only 2 by 2. Therefore, the TMCM is supe-
rior to the DIM in respect to computation memory, 
because the TMCM uses the small size of matrix 
through the transfer rules. 

 
3.2 Example 2 

The second numerical model is a three-dimensional 
beam structure with many crooked parts and supports. 
The total length of the structure is 6.8 m. The physical 
parameters of the beam are as follows: mass density 
7860 kg/m3, Young’s modulus 206 GPa, shear mod-
ulus 79.2 GPa. 

In numerical calculation, the structure is modeled 
as 34, 68, 102, 136 and 170 straight-line beam ele-
ments with the circular cross-section of diameter 5 cm. 
Fig. 9 shows the numerical model having 34 beam 
elements. For the structure modeled as 34 beam ele-
ments, the length of all beam elements is equally 0.2 
m, and the structure has springs and viscous dampers 
at nodes 1, 2, 10, 18, 26, and 34. All constants of 
springs and viscous dampers are as follows: 

 
1 1 1 9 9 17 17
1 2 2 10 10 18 18

25 25 33 33 5
26 26 34 34

1 1 1 9 9 17 17
1 2 2 10 10 18 18

25 25 33 33
26 26 34 34

ˆ ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ 10 N/m,

ˆ ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ 200 Ns/m.

x y z y z y z

y z y z

x y z y z y z

y z y z

k k k k k k k

k k k k

c c c c c c c

c c c c

= = = = = = =

= = = =

= = = = = = =

= = = =

 

 
The mass of the beam is considered as the consis-

tent mass modeling. The structural damping is ne-
glected. The time step is 0.001 s, and the total re-
sponse time is 3 s. The parameters β and γ of New-
mark’s β method are considered as 0.25 and 0.5, re-
spectively. 

The structure is initially at rest and is subjected to 
periodic load ( ˆ yq =A sin ωt, A=2000 N, ω=1 Hz) at 
the location of node 6 for the structure modeled as 34 
beam elements. Each node of the structure has six  

 

 
 
Fig. 9. Three-dimensional beam structure modeled as 34 
beam elements. 
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Fig. 10. Dynamic response of the right-hand end of 
three-dimensional beam structure. 
 

 
 
Fig. 11. Dynamic response of excitation point of three-
dimensional beam structure. 
 

 
 
Fig. 12. Comparison of computation times for three-dimen-
sional beam structure. 
 
degrees-of-freedom in the second numerical model. 

After the structure is divided into 34, 68, 102, 136 
and 170 beam elements, respectively, the results 
computing the dynamic responses of the structure by 
the TMCM coincide completely with those by the 
DIM. Fig. 10 shows the displacements ( , ,x y zu u u ) of 
the right-hand end of the structure modeled as 170 
beam elements, obtained by the TMCM and the DIM. 
Fig. 11 shows the displacements of the excitation 
point of the structure modeled as 170 beam elements, 
obtained by both methods. 

Fig. 12 shows computation time ratio by both me-
thods according to the number of the used beam ele-
ments, where the computation time used for obtaining 
dynamic response of the structure modeled as 34 
beam elements by the TMCM is defined as one. It is 
found from Fig. 12 that the TMCM is superior to the 
DIM in respect to computation time, too. 

For the beam modeled as 170 beam elements, the 
total degrees-of-freedom of system is 1026. Then, in 
the DIM, the sizes of the total mass, damping and 
stiffness matrices are 1026 by 1026. However, the 
size of the mass coefficient matrix in the TMCM is 
only 6 by 6. 

When we obtain the dynamic response of a beam 
structure by the DIM, the sizes of the mass, damping 
and stiffness matrices are equal to the total number of 
degrees-of-freedom for the beam structure. Therefore, 
large computer memory and long computation time 
are required to analyze the beam structure with very 
large degrees-of-freedom by the DIM. However, the 
TMCM can greatly reduce computation time in spite 
of using small computer memory by using the trans-
fer rules successively. 
 

4. Conclusions 

We developed the transfer mass coefficient method 
for effectively computing the dynamic response of 
various beam structures modeled as lumped mass, 
consistent mass, viscous damper, structural damping 
and Rayleigh-type damping. The concept of the pre-
sent method is based on both the transfer technique of 
the mass coefficient and the numerical integration 
technique such as Newmark’s β method. 

In this paper, the algorithm for the dynamic re-
sponse analysis of a three-dimensional beam structure 
is formulated by the transfer mass coefficient method. 
Plane and space beam structures are chosen as nu-
merical models. The response results and computa-
tion times obtained by the transfer mass coefficient 
method were compared with those obtained by the 
direct integration method under the same condition. 
We verified that the transfer mass coefficient method 
can remarkably decrease the computation time of the 
direct integration method without the loss of accuracy 
in spite of using small computer memory. 
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Appendix 

Mass, stiffness and damping matrices of beam ele-
ment [3, 15, 16] 

The mass matrix of the i-th beam element repre-
senting by the local coordinate system fixed on the i-
th beam element is 
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In which 1 /3,m ALρ=  2 13 /35,m ALρ=  3 /3,Xm LIρ=  

3
4 /105,m ALρ=  2

5 11 / 210,m ALρ=  6 / 6,m ALρ=  
7 9 / 70,m ALρ= 8 / 6,Xm LIρ= 3

9 /140m ALρ= −  and 
2

10 13 / 420m ALρ= −  where L, ρ, A and IX are the 
length of the beam, the mass density, the cross-
sectional area and the second moment of area of the 
cross-section about the X-axis, respectively. 

The stiffness matrix of the i-th beam element repre-
senting by the local coordinate system fixed on the i-
th beam element is 
 

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

i
11 12i

i T
12 22 i

K K
K

K K
,  (A.5) 

 
where 

1

2 8

3 7

4

7 5

8 6

0 0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0 0
0 0 0 0
0 0 0 0

k
k k

k k
k

k k
k k

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

11K ,  (A.6) 

1

2 8

3 7

4

7 9

8 10

0 0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0 0
0 0 0 0
0 0 0 0

k
k k

k k
k

k k
k k

−⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥−

= ⎢ ⎥
−⎢ ⎥

⎢ ⎥−
⎢ ⎥

−⎢ ⎥⎣ ⎦

12K ,  (A.7) 

1

2 8

3 7

4

7 5

8 6

0 0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0 0
0 0 0 0
0 0 0 0

k
k k

k k
k

k k
k k

⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥−

= ⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥

−⎢ ⎥⎣ ⎦

22K .  (A.8) 

 
In which 1 / ,k EA L= 3

2 12 / ,Zk EI L=  3
3 12 / ,Yk EI L=  

4 / ,k GJ L= 5 4 / ,Yk EI L= 6 4 / ,Zk EI L= 2
7 6 / ,Yk EI L= −  

2
8 6 / ,Zk EI L= 9 2 /Yk EI L= and 10 2 / ,Zk EI L=  where 

E, G, J, IY and IZ are the Young’s modulus of the ma-
terial, the shear modulus, the torsion constant of the 
cross-section, the second moments of area of the 
cross-section about the Y-axis and Z-axis. 

The damping matrix for the i-th beam element can 
be considered as a linear combination of the mass and 
stiffness matrix as follows: 

 
a b= +i i i

i i iC M K ,  (A.9) 
 
where a and b are constants. 
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